
This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 800987

Deliverable D2.5:

Implementation of comprehen-
sive domain specific language
toolchain

Dissemination Level: public

1

Energy-efficient Scalable Algorithms

for Weather and Climate Prediction at
Exascale

Author: C. Müller, M. Röthlin, C. Osuna
Date: August 31, 2021

Research and Innovation Action
H2020-FETHPC-2017

Project Coordinator: Dr. Peter Bauer (ECMWF)
Project Start Date: 01/10/2018
Project Duration: 36 month
Published by the ESCAPE-2 Consortium

Version: 1.1
Contractual Delivery Date: 30.05.2021
Work Package/ Task: WP2
Document Owner: MSWISS
Contributors: MSWISS, DKRZ
Status: Final

2

1 Executive Summary

This document describes the work performed for the deliverable of a comprehen-
sive domain specific language (DSL) toolchain. The DSL toolchain is a central
pillar of the work performed in WP2 that allows to implement the ESCAPE-
2 weather and climate dwarfs [2] using a high-level descriptive DSL language
for code portability and performance portability. The use of the DSL for the
ESCAPE-2 dwarfs allows to abstract away hardware specific implementation
and advanced optimizations for different computing architectures. The deliver-
able is the set of software components, released as open source, that composes
the entire DSL toolchain compiler. The toolchain is used to parse the weather
and climate dwarfs and generate efficient kernels that are later compiled by
vendor compilers. This document describes the architectural modular design
adopted for the DSL developed within the ESCAPE-2 project, where the soft-
ware is located and how to build and use the compiler. Section 3.2 describes
the different components of the toolchain and how they interact. Section 3.3
provides a working example and finally Section 3.4 gives an overview of how
the generated kernels of the DSL can interoperate with existing Fortran code
and be inserted in model implementations.

2 Introduction

2.1 Backgroud

One of the aims of WP2 of ESCAPE-2 is to define, develop and apply a domain-
specific language (DSL) toolchain applicable to a comprehensive list of algorith-
mic motifs (dwarfs) in weather and climate prediction. Domain specific lan-
guages are powerful tools that provide programming environments that allow
to write numerical scientific algorithms in a concise and high level language.
The weather and climate domain is characterized by very specific algorithmic
motifs derived from the discretization of the numerical methods employed in the
mathematical models, the specific aspect ratio of horizontal to vertical grids in
regional and global models, and the use of sub-gridscale parametrization char-
acterized by different algorithmic patterns. This motivates the development of
a description suitable for these specific domain characteristics, using a highly
concise and readable language. Details such as explicit loops, ordering of the
loop nest, data layout or optimizations such as tiling are hardware specific op-
timizations that are abstracted away from such a high-level language. Among
other things, the DSL language is abstracting away all the details of an efficient
parallel implementation and the hardware dependent programming models and
optimizations. There are several examples of DSLs being developed and ap-
plied to production weather and climate models, like COSMO GridTools[5],

3

the PSyclone for the LFRic model[1] or the CLAW DSL for column based pa-
rameterizations[3]. In contrast to the existing approaches, that are normally
specifically developed for a particular model, the ESCAPE-2 DSL aims at de-
veloping a modular toolchain, that supports a wide range of models, numerical
methods and grids, by adopting a modular design where domain specific fron-
tends or optimizers can be easily incorporated into the toolchain. Additionally,
most of the existing approaches provide a prescriptive language, where the user
still has to provide information crucial for parallelization of the algorithm and
to obtain good performance. Instead the goal of this document is to provide a
high-level descriptive language where the algorithms are described in a sequen-
tial manner. The parallelization and optimization implementations are derived
by the set of optimizers incorporated in the toolchain.

A diagram of such a toolchain is provided in Figure 1.

2.2 Scope of the Deliverable

2.2.1 Objectives of the Deliverable

The objective of this deliverable is to develop a comprehensive and modular
DSL toolchain for the ESCAPE-2 dwarfs. The DSL toolchain will contain the
following:

• High-level frontend that allows to express in a descriptive manner the
ESCAPE-2 dwarfs used as a demonstration (deliverable D2.4).

• An implementation of the intermediate representation (HIR) as defined in
D2.3 that is used to communicate the frontend with the compiler toolchain.

• A DSL compiler that incorporates safe checks and optimization passes
which transform the user sequential code into efficient parallel computa-
tions.

• Code generators that generate efficient kernels that can be compiled by
industry compiler for different architectures.

2.2.2 Work Performed on this Deliverable

DKRZ developed the CDSL (Community Domain Specific Language) fron-
tend [2], which constitutes the application entry point for the ESCAPE2 toolchain.
It provides the user a high-level language that allows the user to express a broad
range of algorithms of the climate and weather domain. The frontend is embed-
ded in C++ and uses the clang frontend of the LLVM compiler. The complete

4

toolchain including the frontend supports dwarfs on two types of grids: Carte-
sian as well as unstructured grids (like the icosahedral grid), as defined in [8].

The CDSL processes the user computations described using the DSL language
and generates the corresponding HIR instance. For that, the DSL toolchain
provides a library with an API in python to easily create HIR instances. The
HIR software was developed within the dawn [6] project.

MeteoSwiss developed an entire toolchain compiler, named dawn [6], that con-
tains the HIR parser, DSL compiler and different code generators. Furthermore,
MeteoSwiss also developed a custom front end for dawn, called dusk, that is pur-
pose built for the computational patterns contained in the (dry) ICON dycore.
The HIR provides a language independent implementation of the HIR specifi-
cation [8]. It provides support to create HIR instances using json or by using
the python API. The dawn DSL compiler takes as input the HIR instance as
a sequential description of the computations by CDSL. A set of compiler opti-
mizers organize the computations for a parallel execution model, resolves data
dependencies by splitting parallel regions when required, fused computations
according to data locality, etc. All the optimizers are integrated within the
dawn [6] compiler and are shared between the Cartesian grid and the unstruc-
ture grid modes of dawn. Finally dawn also incorporates a set of code generators
that generate efficient code for the dwarfs. There are specific code generators for
Cartesian grids and the unstructured grids, since the structure of the kernels
differ considerably and even the API of the code generation changes (due to
the need of lookup tables that describe horizontal connectivity by the unstruc-
ture grid mode). For each of the grid modes, dawn provides an efficient CUDA
backend code generator as well as naive C++ code generator (CPU) used for
verification and debugging purposes.

2.2.3 Deviations and counter measures

The final work to put all the components of the toolchain together caused a
small delay in the final deliverable (due by June 2021). In particular the final
work for a smooth integration between frontend (developed by DKRZ) and the
toolchain compiler (developed by MSWISS). There was also additional work
in order to ensure consistency between the SIR and HIR definitions and to
make the compilation of the entire software more portable (as reflected in the
document) and compilable with the software stack of general linux distributions
like Ubuntu.

This delay affected the final preparation of the software product, but did not
have an impact on other deliverables, since the software toolchain was already
in use for selected ESCAPE-2 dwarfs ported to the DSL.

5

3 Toolchain

In this section installation instructions for the CDSL+dawn and the dusk+dawn
toolchains are provided first. Then there is a general discussion of the toolchain
followed by a concrete example. Finally, the FORTRAN interoperability is
briefly illustrated.

3.1 Toolchain Installation Instructions

3.1.1 Using dawn with the CDSL frontend

In the following a general list of requirements and installation instructions for
the CDSL+dawn toolchain for any Linux distribution are provided with more
concrete instructions for Ubuntu 20.04.

In general the following packages are required:

git

make

cmake > 3.13

gcc/g++/ gfortran > 8.3.0

clang/llvm >= 10.0

python >= 3.8

boost >= 1.58

ecbuild >= 3.1.0

eckit >= 1.4.0

netcdf -fortran >= 4.5.2

On Ubuntu 20.04 one can satisfy these requirements by running:

sudo apt install git make g++ gfortran libeckit -dev \

llvm clang llvm -dev libclang -dev libclang -cpp10 -dev \

python3 -dev python3 -venv python3 -clang libboost -dev \

libnetcdff -dev nvidia -cuda -toolkit

sudo snap install cmake --classic

Next Atlas [4] is built following the instructions on the Atlas Github:

git clone https :// github.com/ecmwf/ecbuild.git

git clone https :// github.com/ecmwf/atlas.git

pushd atlas

6

https://github.com/ecmwf/atlas

Switch to supported commit

git checkout 66 e40483fa0b2882f1e412e7

Environment --- Edit as needed

ATLAS_SRC=$(pwd)
ATLAS_BUILD=build

ATLAS_INSTALL=$(pwd)/ install

1. Create the build directory:

mkdir $ATLAS_BUILD
pushd $ATLAS_BUILD

2. Run CMake

~/ ecbuild/bin/ecbuild --prefix=$ATLAS_INSTALL \

-- $ATLAS_SRC

3. Compile

make -j 8

make install

4. Check installation

$ATLAS_INSTALL/bin/atlas --info

popd

popd

Then a Python virtual environment is set up.

python3 -m venv dawn -dusk -venv

source dawn -dusk -venv/bin/activate

pip install --upgrade pip setuptools wheel

Next dawn is cloned, configured, compiled and installed in the virtual environ-
ment:

git clone https :// github.com/MeteoSwiss -APN/dawn.git

pushd dawn

mkdir build

cmake -S . -B build -DCMAKE_BUILD_TYPE=Debug \

-DBUILD_TESTING=ON \

-Datlas_DIR =~/ atlas/install/lib/cmake/atlas \

-DDAWN_REQUIRE_UNSTRUCTURED_TESTING=ON

7

pushd build

make -j 8

ctest # all tests should pass!

popd

popd

pip install -e dawn/dawn

Depending on if the device has a CUDA-enabled graphics cards, either all tests
will pass or some tests, which depend on CUDA, will fail. To check if only
CUDA-related tests failed one can run ctest --rerun-failed --verbose. All
failing tests should display the ”no CUDA-capable device is detected” error.

Now CDSL can be set up in the following way:

git clone \

https :// gitlab.dkrz.de/escape2/cpp -dsl -front -end.git

pushd cpp -dsl -front -end

copy config file used for build

cp ./conf/user_config -example -ubuntu.sh \

./ user_config.sh

configure , build and run tests

./ cmake_build.sh 1 && ./ cmake_build.sh 2 \

&& ./ cmake_build.sh 3

popd

The CDSL binary is available as cpp-dsl-front-end/build/bin/cdsl and has
the following usage instructions:

usage: cdsl [-h] [-I dir] [-o file] [-s stage] [-json]

[-D macro] [-nopath] [-b backend] file

positional arguments:

file DSL source code file

optional arguments:

-h, --help show this help message and exit

-I dir include directory

-o file output filename

-s stage max processing stage: one of clang_filter ,

parser , AST , SA , HIR , SIR , CPP , CU

-json json output

-D macro cpp macro definition

-nopath do not encode the full filepath

-b backend one of dawn backends (CXXNaive ,

8

CXXNaiveIco or CUDAIco)

3.1.2 Using dawn with the dusk frontend

Installing the alternative frontend to dawn called dusk is a simple matter given
the setup from the last section. One has to activate the dawn-dusk-venv, clone
dusk and install it in the environment:

source dawn -dusk -venv/bin/activate

git clone https :// github.com/dawn -ico/dusk.git

pip install -e dusk

Now the dusk-front binary is available in the activated virtual environment.
Together with the dawn-opt and dawn-codegen binaries in dawn/build/dawn/bin/

the toolchain is complete.

3.2 Toolchain Program Description

The toolchain was designed in modular fashion. Roughly, it can be divided into
three stages: the front end, the compiler stage, and finally the compilation into
binaries using a host compiler. A diagram of the architecture is provided in
figure 1.

The frontends, that is dusk and the community dsl (cdsl), respectively, take
user code and transform said user code into a representation called the Stencil
Intermediate Representation (SIR). The SIR representation is a specific version
of the HIR described in [8]1. Its purpose is to describe stencil like computations
prevalent in climate and numerical weather prediction.

This SIR is then fed into the compiler stage, which is again subdivided into two
logical units: the optimization stage dawn-opt and dawn-codegen. The first
job of the optimization stage is to transform the user code into valid parallel
code. This, for example, includes field versioning. After these transformations
various optimization passes ensure efficient execution of the emitted code. A
rich set of validation passes (e.g. type checking) is run after the initial lowering
of the representation to parallel code, as well as after each optimization pass.

1SIR is the current version of the HIR specification supported by the toolchain. Its func-
tionality supports fully the description of all the ESCAPE-2 dwarfs targeted by the DSL. The
main difference with respect to the design of the HIR [8] is the generalization of some of the
concepts of the HIR for a broader set computational patterns (beyond the ESCAPE-2 dwarfs)
like the ability to define any number of arbitrary dimensions of a field.

9

Figure 1: Schematic view of the toolchain program architecture

The purpose is two-fold: on one hand the user can be informed if there is a
mistake in the program, on the other hand these validation passes serve as a
post-condition contract for each optimization pass, enabling rigorous testing of
the optimization facilities. The available passes in dawn are summarized in
tables 1 and 2.

All of these passes operate on a representation called the Intermediary Inter-
mediate Representation (IIR). It differs from the SIR mostly in two aspects:
first the computations are hierarchically compartmentalized such that they are
safe to be executed in parallel. Additionally decorations / meta information
important to reason about possible optimizations are added.

The final stage of the toolchain is the code generation. Here, each of the IIR
nodes is processed in recursive fashion and tokens in the target language are
emitted. Two such backends are implemented: A C++ backend which focuses
on legibility and is mostly meant for debugging purposes. It is also useful for a
programmer wishing to learn using the toolchain, since it provides a way to easily
exercise the front end code. The other backend is a raw CUDA codegenerator
and is meant to ensure the highest possible performance on GPUs.

Both backends emit program code as text. This ensures that the programmer
is free to inspect the emitted code, as well as chose the appropriate compiler for
the host computer at hand.

10

Pass Name Description

Grid Type Checker Prevents that the user mixes Cartesian
with unstructured code

Indirection Checker Prevents vertically indirected writes
Integrity Checker Ensure that AST is well formed at all

times
Unstructured Dimensions Checker Ensure that unstructured user code is

consistent in location types (edge, cell,
vertex)

Weight Checker Ensure that weights passed into a re-
duction are of the correct type

Table 1: List of validation passes

Pass Name Description

Stage Reordering Rearrange computation stages to maximize merging
potential

Stage Merger Merge adjacent stages if possible
Pass Temporary Type Demote temporary fields to scalars if possible
Interval Partitioning Reorganizes vertically overlapping computations

into a non overlapping ordered set of interval com-
putations to maximize fusing potential

Temporary Merging Reduces the number of emitted temporaries (e.g.
due to field versioning) to a minimum.

Inlining Avoid memory accesses by inlining computations
saved to a temporary

Set Block Size Determine optimal CUDA block size heuristically
Set Caches Chose optimal caching strategy for CUDA backend

Table 2: List of validation passes, see also [7].

11

3.3 Worked Example

To illustrate the explanations above, a worked example is presented in this
section. For this purpose, lets chose a stencil given in [10] and implement it in
cdsl. The notation has been adapted for better legibility:

ζq =
1

âq

j∈E(q∑
j

vnj · l̂j · fj |∀q ∈ V

This stencil computes the curl at a vertex q given the normal velocity vn at the
edges j around q. That is, the set E(q) denotes the edge neighbors of vertex q.

âq is the area of the dual cell at q, whereas l̂j is the length of dual edge j and
fj is an orientation factor ±1 to ensure that the Stokes theorem is implemented
properly. V is simply the set of all vertices in the mesh. The situation is
illustrated in figure 2.

n

vj
aq

q

lj

Figure 2: Geometrical representation of the stencil used in the worked example.

This stencil is readily implemented using cdsl (abridged listing, consider the
appendix 6.1 for the complete listing):

void curl(VK_Field zeta_q ,

EK_Field vn,

EK_Field dualL ,

VEK_Field f,

VK_Field dualA) {

zeta_q = nreduce(edges , vn * dualL * f) / dualA

}

In the listing above, a few things are of note. All the fields have a type, indicating
their location. In conjunction with the type annotation of the reduction nreduce

this provides safety already at compile time, preventing the user from performing
a reduction that is intended from cells to edges, say, to a vertex field. Types
can also represent so called sparse fields. This is the case for the orientation

12

f , which is of type VEK_Field. This is because for each vertex, there is an
orientation stored for each of that vertex’ neighbors (e.g. 6 in the case of an
icosahedral mesh). We can now use the cdsl frontend to produce the SIR.

cdsl -s SIR -json curl.cpp -o curl.sir

Then use dawn-opt to emit the IIR.

dawn-opt --default-opt curl.sir -o curl.iir

And finally use dawn-codegen to emit the code for the host compiler.

dawn-codegen --atlas-compatible curl.iir -b cuda-ico -o curl.cpp

We take care to emit code compatible with the Atlas meshing library [4]. This
allows using atlas meshes in the driver code, allowing for easy testing of the
complete stencil (i.e. an integration test). Figure 3 shows the stencil applied to
a simple test function.

1 0 1
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
curl

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1 0 1
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
curl solution

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1 0 1
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
difference (note color scale)

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

Figure 3: The curl operator implemented in this section applied to some simple
spherical harmonics.

3.4 dawn to FORTRAN interoperability

The primary use case of the DSL approach in NWP and climate is not to develop
a model from scratch using the DSL, but porting existing parts of a model. Most
model code is in FORTRAN. The toolchain thus provides facilities to easily
inter-operate with existing FORTRAN code. An interface is provided to either
just launch a DSL kernel from FORTRAN, or additionally provide reference
solutions from the FORTRAN codebase to efficiently verify the DSL code. This
allows for incremental porting of existing model code to DSL on a per-stencil
basis. The toolchain can be instructed to emit a FORTRAN interface using

13

dawn -codegen --atlas -compatible curl.iir -b cuda -ico

--output -f90 -interface curl.f90 -o curl.cpp

A block diagram of the FORTRAN interoperability is given in figure 4. An
excerpt of a FORTRAN interface for the worked example from section 3.3 is
given in appendix 6.2.

Figure 4: Block diagram of FORTARN interoperation

4 Conclusions

ESCAPE-2 has successfully developed an entire DSL toolchain that is capable of
processing the target weather and climate dwarfs and generate efficient kernels
that can be integrated into existing models. During early work of the project,
in closed collaboration with developers from various models, a comprehensive
definition of a high-level language for a DSL for weather and climate models was
defined in D2.1 [8]. A formal definition of an intermediate representation, HIR,
that captures the DSL language elements of D2.1 was then fully described in
D2.3 [9]. Finally this deliverable describes the entire set of software components
developed to implement this DSL language. The toolchain adopts a modular
design, which allows to integrate various frontends as well as multiple comput-
ing architecture specific backends. The toolchain presented here is composed
of the entry level frontend, CDSL, that parses the dwarfs computations imple-
mented using the DSL language, and the compiler dawn, which incorporates
an implementation of the HIR specification as well as various code generators.
Finally, both the CDSL frontend as well as the dawn compiler support a wide
variety of computational motifs as well as grids, including the Cartesian grid
and unstructured (icosahedral) grid models.

14

5 References

[1] S. V. Adams et al. “LFRic: Meeting the challenges of scalability and per-
formance portability in Weather and Climate models”. In: Journal of Par-
allel and Distributed Computing 132 (2019), pp. 383–396. issn: 0743-7315.
doi: https://doi.org/10.1016/j.jpdc.2019.02.007. url: https://
www.sciencedirect.com/science/article/pii/S0743731518305306.

[2] J. Behrens et al. ESCAPE2 D2.4: Demonstration of domain specific lan-
guage toolchain for selected weather and climate dwarfs. 2021.

[3] V. Clement et al. “The CLAW DSL: Abstractions for Performance Portable
Weather and Climate Models”. In: Proceedings of the Platform for Ad-
vanced Scientific Computing Conference. PASC ’18. Basel, Switzerland:
Association for Computing Machinery, 2018. isbn: 9781450358910. doi:
10.1145/3218176.3218226. url: https://doi.org/10.1145/3218176.
3218226.

[4] W. Deconinck et al. “Atlas : A library for numerical weather predic-
tion and climate modelling”. In: Computer Physics Communications 220
(2017), pp. 188–204. issn: 0010-4655. doi: https://doi.org/10.1016/
j.cpc.2017.07.006. url: http://www.sciencedirect.com/science/
article/pii/S0010465517302138.

[5] T. Gysi et al. “STELLA: a domain-specific tool for structured grid meth-
ods in weather and climate models”. In: SC ’15: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Stor-
age and Analysis. 2015, pp. 1–12. doi: 10.1145/2807591.2807627.

[6] C. Müller et al. dawn. url: https://github.com/MeteoSwiss-APN/
dawn/.

[7] C. Osuna et al. “Dawn: a high-level domain-specific language compiler
toolchain for weather and climate applications”. In: Supercomputing Fron-
tiers and Innovations 7.2 (2020), pp. 79–97.

[8] C. Osuna et al. ESCAPE2 D2.1: High-Level Domain Specific Language
(DSL) specification. 2019.

[9] C. Osuna et al. High-level intermediate (HIR) representation specification.
2020.

[10] G. Zängl et al. “The ICON (ICOsahedral Non-hydrostatic) modelling
framework of DWD and MPI-M: Description of the non-hydrostatic dy-
namical core”. In: Quarterly Journal of the Royal Meteorological Society
141.687 (2015), pp. 563–579.

15

https://doi.org/https://doi.org/10.1016/j.jpdc.2019.02.007
https://www.sciencedirect.com/science/article/pii/S0743731518305306
https://www.sciencedirect.com/science/article/pii/S0743731518305306
https://doi.org/10.1145/3218176.3218226
https://doi.org/10.1145/3218176.3218226
https://doi.org/10.1145/3218176.3218226
https://doi.org/https://doi.org/10.1016/j.cpc.2017.07.006
https://doi.org/https://doi.org/10.1016/j.cpc.2017.07.006
http://www.sciencedirect.com/science/article/pii/S0010465517302138
http://www.sciencedirect.com/science/article/pii/S0010465517302138
https://doi.org/10.1145/2807591.2807627
https://github.com/MeteoSwiss-APN/dawn/
https://github.com/MeteoSwiss-APN/dawn/

6 Appendix

6.1 Complete cdsl file for the worked example

#include "dsl.hpp"

using namespace EDSL;

namespace edsl {

Gridspace ek_space(edges ,levels);

define_field_type(EK_Field ,ek_space);

Gridspace vk_space(verts ,levels);

define_field_type(VK_Field ,vk_space);

Gridspace vek_space(verts ,edges ,levels);

define_field_type(VEK_Field ,vek_space);

Gridspace ecek_space(edges ,cells.edges ,levels);

define_field_type(ECEK_Field ,ecek_space);

void curl (VK_Field zeta_q ,

EK_Field vn,

EK_Field dualL ,

VEK_Field f,

VK_Field dualA) {

zeta_q = nreduce (edges , vn * dualL * f) / dualA;

}

}

6.2 FORTRAN interface for the worked example (excerpt)

module curl

use , intrinsic :: iso_c_binding

implicit none

interface

real(c_double) function &

run_curl(&

vn, &

dualL , &

dualA , &

f, &

zeta_q &

) bind(c)

16

use , intrinsic :: iso_c_binding

real(c_double), dimension (*), target :: vn

real(c_double), dimension (*), target :: dualL

real(c_double), dimension (*), target :: dualA

real(c_double), dimension (*), target :: f

real(c_double), dimension (*), target :: zeta_q

end function

end interface

end module

17

Document History
Version Author(s) Date Changes
1.0 Christoph Müller and Matthias Röthlin 15.07.2021 first version
1.1 Christoph Müller and Matthias Röthlin 19.08.2021 final version with all review comments

Internal Review History
Version Author(s) Date Changes
1.0 Kim Serradell 22.07.2021 implement review comments
1.0 Mike Gillard 23.07.2021 implement review comments

Effort Contributions per Partner
Partner Efforts
MSISS 24 PM
DKRZ 4 PM
Total 28 PM

18

ECMWF Shinfield Park Reading RG2 9AX UK

Contact: peter.bauer@ecmwf.int

The statements in this report only express the views of the authors and the European Commission
is not responsible for any use that may be made of the information it contains.

	Executive Summary
	Introduction
	Backgroud
	Scope of the Deliverable
	Objectives of the Deliverable
	Work Performed on this Deliverable
	Deviations and counter measures

	Toolchain
	Toolchain Installation Instructions
	Using dawn with the CDSL frontend
	Using dawn with the dusk frontend

	Toolchain Program Description
	Worked Example
	dawn to FORTRAN interoperability

	Conclusions
	References
	Appendix
	Complete cdsl file for the worked example
	FORTRAN interface for the worked example (excerpt)

